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Related Work

A. Shamir and E. Tromer - “Acoustic cryptanalysis” (2004) [12]
I Heat causes mechanical stress expressed as low-level acoustic noise
I Exploit the acoustic emissions to get information about processed data

Several low-temperature attacks
I S. Skorobogatov [13] and D. Samyde et al. [11]
I Cooling down SRAM (−50 ◦C) will freeze the data
I Allows reading out of data even after seconds after power down
I Similar to cold-boot attacks [10]

J. Brouchier et al. - “Thermocommunication” (2009) [3, 4]
I Cooling fan can carry information about the processed data
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The Temperature Side Channel

Electrical current causes heat

Heat is proportional to the power consumption

Temperature of the ATmega162 is measured using a Resistance
Temperature Detector (PT100 RTD sensor)

AD693 is an analog conditioning circuit to amplify the sensor signals
(voltage to current converter, 4...20 mA to 0...104 ◦C)
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The Measurement Setup

Rear-side de-capsulated chip

The silicon substrate offers a good thermal conductivity for the RTD
sensor (about 150W /m · K )
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Temperature Leakage Characterization

We measured the temperature dissipation of various instructions, e.g.
MOV, ADD, EOR, and MUL

Evaluated the impact of thermal conductivity and capacitance
I Targeted one byte that is processed and stored in 24 internal registers

(and cleared before writing)
I Executed the instructions in a loop

Long acquisition window of 20 seconds
I First 10 seconds: process zero values
I Second 10 seconds: process all possible byte values (28)
I We averaged 100 traces per value to reduce noise
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AVR Results
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The temperature side-channel obviously leaks the Hamming weight of
the processed data

Data caused an averaged DC increase/decrease (0.3 ◦C)
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PIC16F84 Results
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Observed Characteristics

Temperature variation is limited by the physical property of thermal
conductivity

Heat flow can be seen as a (low-pass) RC network with cut-off
frequency of some kHz

Transistor 

Ambient 
temperature 

Junction Case (Heat sink) 

Higher frequency leakages are filtered

Temperature sensor has limitations in response time and acquisition
resolution (100 ms and 0.01 ◦C)
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Attack Scenarios and Ideas

1 Loops and continuous leakages
I Implementation repeatedly checks a password (as similarly argued by

Brouchier et al. [3, 4])
I Password is written continuously from memory into registers
I The dissipated temperature can then be exploited to reveal the

password

2 Exploiting static leakage
I Assuming a device is leaking information in the static power

consumption (already shown by, e.g., Giogetti et al. [7] or Lin et al. [9])
I The clock signal can then be stopped, e.g., after the first AES S-box

operation
I Intermediates can be extracted from the temperature side channel
I Advantage: plenty of time available to measure the temperature leak

Michael Hutter and Jörn-Marc Schmidt CARDIS 2013, November 27-29, 2013
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Exploiting Heating Faults

Well known attack, but less details available in literature

The device is exposed to extensive heating (> 150 ◦C)
I ATmega162 operated beyond the maximum ratings
I Target implementation was CRT-RSA

Bellcore attack [2]
I CRT allows computing two exponentiations in smaller sub-groups

(faster)
I Signature S ≡ CRT ((md mod p), (md mod q)) mod n
I Injection of a random fault ∆ causes the device to output a faulty

signature S̃ ≡ CRT ((m mod p)d , (m mod q)d + ∆) mod n
I Now p = gcd(S̃ − S , n) can be calculated to factorize p and to reveal

the RSA primes p and q

Michael Hutter and Jörn-Marc Schmidt CARDIS 2013, November 27-29, 2013
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The Used Setup

Laboratory heating plate from Schott instruments (SLK 1)
I ATmega162 placed directly on top of the hot-plate surface
I Temperature measured with two PT100s

“Flying” connections
I Exposed wires to avoid any contact to the hot plate: serial connection,

power supply, clock signal, and reset

Controller
I Spartan-3 FPGA-based board
I Allows turning off/on signals

Michael Hutter and Jörn-Marc Schmidt CARDIS 2013, November 27-29, 2013



Introduction SCA Faults Remanence Conclusions 13 / 24

Results

ATmega162 does not respond after 160 ◦C

Faults occurred between 152 and 158 ◦C
I Within 70 minutes, we got 100 faults
I 31 revealed one of the prime modulus: 15 revealed p, 16 revealed q
I 7 faults produced the same RSA output

Same result also for other
ATmega162 devices

I E.g., 182 faults within 30
minutes

I Mean and fault temperature
varies per device
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Exploiting Data-Remanence Effects

Data stored in SRAM for a long period of time leaves a permanent
mark, cf. P. Gutmann [8]

Can be recovered by reading out the preferred power-up values
I Practically exploited by R. Anderson and M. Kuhn [1] in 1997, recovered

over 90 % of a DES key of a late 1980s bank card
I Harder on newer SRAM structures, 18 % recoverable (cf. Cakir [5])

Effect is due to aging where transistor parameters change (speed,
current drive, noise margin)

Extensive heating accelerates aging
I Negative Bias Temperature Instability (NBTI)
I SRAM cells get “weaker” and tend to a certain bit value

Two NBTI degradation components: permanent and transient
damage [6]

Michael Hutter and Jörn-Marc Schmidt CARDIS 2013, November 27-29, 2013
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Permanent Data Remanence Effect

1 Tests performed on new ATmega162; preferred power-up values are
around 50 %

2 We wrote randomly distributed data to SRAM (3 072 bits to “1” and
3 072 bits to “0”, 6 144 out of 8 192 bits total)

3 Exposed the device to extensive burn-in stress
I 100 ◦C for 36 hours at 5.5 volts
I SRAM cells got biased:

52.24 %→ 1, 47.75 %→ 0
I 919 bits (15 %) changed their

state, i.e., 30 % are unstable
I > 95 % of the bits tended to the

correct value
I In total, we can predict 63 %

correctly
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Transient Data Remanence Effect

1 Read out the SRAM content every 4 seconds during burn-in stress

2 Heated up to 170 ◦C and turned off heating afterwards

I “Weak” SRAM cells tend to “0”
during heating

I They move back to preferred
state after cooling

I Can be used to identify
“unstable” bits

I Around 30 % have been
identified to be unstable
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How to Exploit NBTI Degradation?

1 Combine revealed SRAM content of several devices
I Assume all devices share the same secret
I Reveal parts of the data of many devices and combine the information
I Identify constant data, i.e., related to the key with high probability

2 Apply partially key exposure attacks
I Apply burn-in stress for several hours
I Read out the memory
I Exploit transient NBTI effect to identify “unstable” bit locations
I Now use previously revealed bits at these locations to obtain correct

SRAM content with high probability
I Apply cryptanalytic attacks to reveal the entire secret

Michael Hutter and Jörn-Marc Schmidt CARDIS 2013, November 27-29, 2013
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Further Research Suggestions

More NBTI tests
I Accelerate aging while device is performing crypto operations (realistic

scenario)
I Are SRAM cells that stored constant data (key) “unstable” during

transient NBTI?

Heat penetrates through different materials (through shielding?)

Heating or cooling will change the characteristics not only for memory
but also for logic...

I Increase/decrease threshold voltages, e.g., of watchdog circuits

Exploit static power/temperature leakages on newer CMOS processes

Michael Hutter and Jörn-Marc Schmidt CARDIS 2013, November 27-29, 2013
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Thanks for attention!

Questions?

Michael Hutter

michael.hutter@iaik.tugraz.at

Graz University of Technology
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